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Our paper

» Goal: study the distributional impacts of RTP using hourly
electricity consumption data of 2M Spanish households.

1. Quantify the impacts assuming price-inelastic consumers.
— Justified by our previous project.
2. Assess the relationship of RTP impacts with income.

— Decompose main effects and channels.

3. Consider counterfactual experiments.

— Extreme events; price-elastic households.
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Our paper

» Goal: study the distributional impacts of RTP using hourly
electricity consumption data of 2M Spanish households.

1. Quantify the impacts assuming price-inelastic consumers.

— Justified by our previous project.

2. Assess the relationship of RTP impacts with income.

— Decompose main effects and channels.

3. Consider counterfactual experiments.

— Extreme events; price-elastic households.

» Challenge: we do not have detailed income information.
» We complement aggregate patterns of distributional effects
with a method to infer individual income using zip-code
income distributions.
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Preview of results

Main Finding:
» The move towards RTP was slightly regressive, with heating
mode and locations as the main drivers.
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» The move towards RTP was slightly regressive, with heating
mode and locations as the main drivers.

Main Effects:

» Switch from annual to monthly prices is regressive —
low-income households tend to consume relatively more
during winter when RTP prices are higher.

» Switch from monthly to hourly prices is progressive —
low-income households consume relatively less at off-peak
hours when RTP prices are lower.
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Preview of results

Main Finding:

» The move towards RTP was slightly regressive, with heating
mode and locations as the main drivers.

Main Effects:

» Switch from annual to monthly prices is regressive —
low-income households tend to consume relatively more
during winter when RTP prices are higher.

» Switch from monthly to hourly prices is progressive —
low-income households consume relatively less at off-peak
hours when RTP prices are lower. Main Channels:

» Building/heating stock appears to be the major driver of
consumption patterns, which is correlated with income but
also differs across locations.
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Overview of today's talk

ARl A

Background and data
Inferring households’ income

Quantifying the distributional impacts
Channels

» Consumption patterns

» Appliance ownership

» Locations
Counterfactuals

» Extreme events
> Price-elasticity

. Conclusions
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Dynamic electricity pricing in Spain
» April 2015: Spain becomes the only country in which RTP is
the default option for all households.
» The case of Spain with a regulated default dynamic price
contract is unique (EC, 2019).
» Households can opt out to time-invariant prices.

0 02 04 06 08 10 12 14 16 18 20 22

Figure: Example: electricity prices for Spanish households on 11/01/2017

5/29



Data

» We obtained smart-meter data for over 2M households, from
one large Spanish utility (Naturgy).
» For each household (January 2016-July 2017), we have:

- hourly electricity consumption
- plan characteristics (pricing, contracted power)
- postal code

» We link the postal code with detailed Census data:

- education, income and age distribution, avg number of rooms...

6
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Data: electricity consumption area




A first look at the data: month vs annual variation
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Figure: Summary of price variation
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Computing bills under RTP and time-invariant prices

» We compute the bill change from being at RTP:
ABIll = BillR™ — Bill;

where:

> Bill®™: Bill under hourly prices (RTP)
» Bill;: Bill under the annual average price (time-invariant)
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Computing bills under RTP and time-invariant prices

» We compute the bill change from being at RTP:
ABIll = BillR™ — Bill;

where:

> Bill®™: Bill under hourly prices (RTP)
» Bill;: Bill under the annual average price (time-invariant)

» We also separate hourly and monthly cross-subsidization:
“within month” and “across months" effects
ABill = [BillR™ —Bill!") + [Bill;" — Bill;].

where:

» Bill;': Bill under the monthly average prices

29



The challenge: inferring households’ income

» We observe the distribution of income at the zip code level.

» Assigning the income distribution at the zip code level to all
households in that zip code (naive approach) can miss
important within-zip-code heterogeneity.

» We assign households’ income by exploiting richness of hourly
consumption data and zip-code level income distributions.
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The challenge: inferring households’ income

» We observe the distribution of income at the zip code level.

» Assigning the income distribution at the zip code level to all
households in that zip code (naive approach) can miss
important within-zip-code heterogeneity.

» We assign households’ income by exploiting richness of hourly
consumption data and zip-code level income distributions.

Overview of our two-step approach:
1. Classify consumers into types (k-cluster):
» Households with “representative” consumption patterns.

2. Infer income distribution of those types based on the
distribution of income and types in each zip code.

» ldentifying assumption: types are shared across zip codes
(what changes is the proportion of types in each zip-code).
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Inferring households’ income

Notation and definitions
» Zipcode as z € {1,...,Z}.
» Income bins as incx € {incy, ..., inck}.

» Households in zip code z as i € {1,..., H,}.

» Observed zip-code income distribution: Pr,(incy).

» Unknown household income distribution: Pr;(inc).
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Assigning a prob. income distribution to households

introduce new additional objects:
Zip code as z € {1,...,Z}.

Income bins as inck € {incy, ..., inck}.
Households in zip code z as i € {1,..., H,}.
Discrete types as 0, € {01,...,0n}.

Observed zip-code income distribution: Pr,(incy).
Unknown household income distribution: Pr;(incy).
Unknown household type distribution: Pr;(6,)

Unknown type-income distribution: nX (probability that type
n has income bin k).
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Step 1: classify consumers into types

» We reduce the dimensionality of our data into market shares
for daily consumption in weekdays and weekends for each
individual household.

» We group nearby zip codes and cluster the population of
consumers based on these market shares as well as the levels
of consumption. Observable types based on contracted power.

» Our baseline has 5 types per observable types.

nsumption Share

— Type 0, 0.8% 7.2kwh/day
Type 1,16.1% 7.3kwh/day
Type 2, 16.4% 9.2kwh/day
Type 3, 2.9% 15.8kwh/day

—— Type 4, 4.4% 6.8kwh/day

Daily Cor

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
Hour
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Step 2: Infer income distribution of the types

Zipcode 1 Zipcode 2
04 Oa
05 Os

’r]f\’Prl(HA) + 12 Pri(0g) =
Pri(inc = H)

/I]AHPQ(GA) + Pr2(HB) =
Pry(inc = H)

» Assume we have already inferred the distribution of types 6; in each

zip code z, Pry(6;), in Step 1.

» 7 is the (unknown) probability of income H for type 64 (similarly

for 6g).

» Match zip code moments on the distribution of income, assuming
same underlying types across (a set of) zip codes.
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Our two-step method extracts relevant signal

» Contracted power tends to be positively correlated with
income.

» Our two-step approach predicts a higher income distribution
for households with high contracted power.

» In contrast, the aggregate zip-code level distribution of
income would miss such correlation.

Figure: Estimated income distribution and contracted power
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(a) Two-step method (b) Naive approach
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Bringing it back to measuring the policy impacts

We use the inferred distribution of income at the household level
to assess the distributional impacts of RTP.

v

What is the impact of RTP across income bins?
» How can it decomposed?

What are the main drivers for the effects?

v

v

Does the within-zip-code heterogeneity matter?
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Heterogeneous impacts by income bins

Figure: Bill changes due to the switch to RTP

1.00+
—— naive

0.75- — gmm

0.50 1
0.25 A
0.00 1

—0.254

Bill Changes [%]

—0.501

—0.754

-1.00

1st 2nd 3rd 4th 5th
National Income Quintiles

» RTP is slightly regressive - still, the average impact is small.

» RTP impacts are highly heterogeneous within zip-code
because of income heterogeneity.

» Distributional implications are reversed relative to using
zip-code level income.
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Decomposing the impacts

Figure: Decomposition of the bill changes (two-step approach)
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» Within month price changes have progressive impacts.

» However, across month price changes have regressive effects.
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The mechanisms behind these patterns

» We explore different channels in which consumption of
electricity can relate to income and other factors.

» We consider:
» Consumption patterns by income.
» Appliance ownership, across and by income.
» Geographical variation related to weather/appliances.
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Figure: Appliance ownership by income and location
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Mechanisms: consumption patterns during the day

Hourly Consumption [kWh]

>
>

—

Figure: Hourly consumption during the day
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Higher income quintiles consume more electricity.
They also consume proportionally more at peak hours.
The within month effect is progressive.
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Mechanisms: appliance ownership

Figure: Bill changes by appliance ownership
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(a) Within month effects (b) Across months effects

» We infer appliance ownership based on consumption structural
breaks to local temperatures.

» Appliance ownership, key for the within-income heterogeneity.

» The bigger bill increases are suffered by households with
electric heating due to the across months effect.
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Mechanisms: appliance ownership and income impacts

Figure: Consumption curves for households with and w/o electric heating

(a) Hourly consumption (b) Monthly consumption

» Households with electric heating consume more during peak
hours and winter when prices are higher.

» Appliance ownership creates bigger differences than income.

» Conditional on appliance ownership, income still induces
substantial differences.
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Mechanisms: geographical heterogeneity

Figure: Geographical heterogeneity and decomposition of the impact
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(a) Within month effects (b) Across months effects

» Within month effects are similar across income and geography.

» Seasonal price variation across locations drives the
heterogeneous impacts.



Counterfactual experiments

» The distributional impacts in our sample are limited and
bounded (small price variation).

» However, patterns could change going forward, with increasing
extreme pricing and volatility (as experienced lately).
» We explore several counterfactuals:

- Demand elasticity (under different correlations with income).
- Extreme events (under alternative assumptions on price levels
and volatility).
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Commodity risks and energy poverty

(a) Simulated prices (b) Simulated price volatility

» We consider simulated prices (with low, medium, high levels
and low, medium, high volatility).

> We re-analyze the distributional implications of RTP.
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Commodity Risks and Energy Poverty

Figure: Distributional implications of RTP under a large price shock
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» Low-income households are relatively worse off under high
prices and low volatility.

» High price levels have more adverse distributional impacts
than high price volatility.

» The across month effects strongly dominate the within month

effects.
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Demand elasticity

Figure: Distributional implications of RTP under demand elasticity
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» Suppose that elasticity is positively correlated with income.
» RTP becomes more regressive.

» The within month effect is no longer progressive as
high-income households can now benefit from the within day
price variation.
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Conclusions

» Distributional implications of RTP in Spain (2016-2017).
> In this context, RTP was slightly regressive.
» Bill impacts decomposed in:

» within month effects (daily price variation).
» across months effects (seasonal price variation).

» Key drivers: appliance ownership and location.

> In Spain, low-income households rely more on electric heating,
which exposes them to the high winter prices.
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Conclusions

v

Distributional implications of RTP in Spain (2016-2017).
> In this context, RTP was slightly regressive.

v

Bill impacts decomposed in:

» within month effects (daily price variation).
» across months effects (seasonal price variation).

v

Key drivers: appliance ownership and location.

> In Spain, low-income households rely more on electric heating,
which exposes them to the high winter prices.

v

Not a criticism to RTP - results might be country specific.

v

Rather, we provide a framework to assess its distributional
effects so as to design an equitable RTP system.
» The potential regressive of across months effects can be
addressed while preserving the hourly price signal.
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Thank you!

Questions? Comments?
natalia.fabra@uc3m.es



Appendix



Measuring elasticity to RTP

» We estimate the short-run price elasticity of households.
» Main regression (individual by individual):

In gitn = Bi In pieh + @ Xith + Yiew + €ith

Density of Elasticity Estimates
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Average elasticities by group are close to zero

(1) (2) (3) (4)

p-ivll p-iv21 p-iv3l p_lasso
rtp -0.00513  -0.00430 -0.00374 -0.00468
(0.00238) (0.00237) (0.00220) (0.00217)

Constant -0.00473  -0.00883 -0.0117 -0.0237

(0.00244) (0.00252) (0.00182) (0.00274)

Observations 14598 14598 14598 14598

Standard errors in parentheses

» No effect from RTP.



Related literature

» Papers on the role of RTP and efficiency:

- Borenstein (2005) among related papers.

» Papers on the role of electricity pricing and equity:

- Borenstein (2007) (industrial), Borenstein (2012) (nonlinear
pricing), Borenstein (2013) (critical peak pricing), Faruqui et
al. (2010), Horowitz and Lave (2017), Zethmayr and Kolata
(2018), Burger et al. (2019).

» Papers on inferring income:

- Pissarides and Weber (1989), Feldman and Slemrod (2007),
Artavanis, Morse, and Tsoutsoura (2016), Dunbar and Fu
(2015), etc.

» Papers unveiling household heterogeneity:
- BLP (1995, 2004), Petrin (2002), Fox et al. (2011), Almagro

and Dominguez-Lino (2021), Bonhomme, Lamadon, and
Manresa (2021).
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Mechanisms: appliance ownership and income impacts

Figure: Consumption curves for households with and w/o electric AC

(a) Hourly consumption (b) Monthly consumption

» Households with air conditioning are affected by prices during
peak hours and summer.

» AC ownership creates smaller differences than heating.
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