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Abstract

As shortages of resources like water and electricity due to extreme weather events become more

frequent, high prices alone may fail to curb demand, making non-price interventions necessary. We

propose a power limit policy for residential electricity households that limits their consumption to avoid

traditional rolling blackouts. Using smart meters, we find that consumption limits can provide equivalent

savings to large rolling blackouts, even when generous. Additionally, due to selection, power limit policies

reduce the number of households impacted by a shortage event. We conclude by discussing the welfare

consequences of rationing mechanisms and their heterogeneous impacts across households.
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1 Introduction

When the supply of essential goods like water, food, or electricity falls short of demand and cannot be quickly

increased, prices can fail to clear the market. In times of scarcity, high prices often do not sufficiently curb

demand (Labandeira et al., 2017; Zhu et al., 2018; Romero-Jordán et al., 2014), particularly when consumers

are unable or slow to adjust their consumption, or when demand surges unpredictably (Joskow and Tirole,

2007; Borenstein et al., 2023). In these cases, non-price interventions are often necessary to mitigate the

burden on vulnerable populations. One possible intervention is quantity rationing. Rationing has been

applied in a variety of scarcity situations in the past, may it be limited gasoline access during the oil crisis

in 1973 (Horowitz, 1982), reducing access to water during droughts (Renwick and Green, 2000; Ryan and

Sudarshan, 2020; Abajian et al., 2024) or cutting off households from the electricity supply during extreme

weather events (Hunt. et al., 2018).

Looking forward, climate change poses a growing threat to ensuring the provision of basic necessities,

particularly during extreme events. According to the IPCC, the increasing frequency and intensity of extreme

weather events such as heatwaves, storms, and wildfires exacerbate the risk of blackouts, while the presence

of extended droughts and persistent extreme temperatures threaten access to water and food (Pörtner

et al., 2022; Stone et al., 2021).1 Regions dependent on hydropower or thermoelectric power plants face

particular risks due to climate change, as these systems depend heavily on water availability and temperature

for cooling (Byers et al., 2020; Haes Alhelou et al., 2019).2 Such conditions not only threaten energy

supplies but also compound water shortages for agricultural and residential users.3 Due to the significant

costs and distributional implications of essential goods shortages, regulators need to prepare for unexpected

emergencies where price mechanisms alone may not be an effective tool to clear the market due to the need

to ensure access for critical goods (Levin et al., 2022; Renwick and Green, 2000; Joskow and Tirole, 2007).4

Improvements in rationing schemes have the potential of ensuring access to basic goods during extreme

shocks.

A recent example of shortages triggered by extreme events is the Texas winter storm in February 2021,

when the power supply chain experienced significant failures and was unable to meet the high demand (Wolak,

2022). To ensure that the grid was operational, the Southwest Power Pool and the Electric Reliability Council

of Texas ordered rolling blackouts, leaving millions of households without electricity, some for consecutive

days.5 The Texas shortages occurred even in the presence of a high price $9,000/MWh cap in the market,

which did not incentivize more generation due to the failure of the physical supply chain of natural gas.

Rather than increasing the price cap for future events, the Public Utility Commission (PUC) of Texas has

since limited the price cap to $5,000/MWh, due to the ripple effects on retailer bankruptcies and household

1Pörtner et al. (2022) reports increasing human and economic losses from climate-related events, including cascading impacts
like blackouts caused by flood-damaged energy infrastructure. According to Stone et al. (2021), the potential for blackouts in
the US during extreme weather events is rising. Blackouts of at least one hour that impact 50,000 or more utility customers
increased by 60 percent in the years before 2021.

2In the U.S. and Europe, the likelihood of extreme reductions in thermoelectric power generation is projected to triple.
Studies suggest that, during summer, power plant capacity could decrease by 6-19 percent in Europe and 4-16 percent in the
U.S., depending on the cooling technology and climate scenario (Vliet et al., 2012; Yalew et al., 2020).

3A recent example is the case of Ecuador, which is undergoing extreme drought, leading to problems of energy, water, and food
supply in many parts of the country. See https://www.wired.com/story/ecuador-energy-crisis-water-shortage-hydro/.

4A recent discussion on these issues has emerged in Europe due to the increasing costs of energy in the wake of the gas crisis
with Russia (Nasr and Eckert, 2022).

5This winter storm became Texas’ most costly natural disaster, with estimated damages of $195 billion and over 240 cold-
related deaths, highlighting significant societal and economic impacts (Hellerstedt, 2021; Austin-Travis County, 2021). Further
studies, such as those by Lee et al. (2022) and Peterson et al. (2024), have shown that low-income and ethnic minority groups,
along with households with children and those with disabilities, were disproportionately affected, indicating existing inequalities
in the distribution of power outages in Texas.
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bills, highlighting the potential limitations of the price mechanism when dealing with essential goods during

extreme events in otherwise well-functioning markets.6

We focus on improving quantity-based interventions for shortages in the electricity residential segment.

Today, shortages typically cause households to lose access to electricity in the form of rolling blackouts.

Rather than relying on blackouts to reduce demand, which is an extreme form of rationing, we study power

limits using smart meters. The mechanism, also known as load limiting, uses the capabilities of smart

meters to dynamically limit households’ consumption based on the severity of the shortage, with rolling

limits serving as one example. Rather than exposing entire neighborhoods to the dark for several hours with

rolling blackouts, the mechanism limits consumption at each home and provides access to essential appliances

such as refrigerators, lights, and communication devices. Because the limits apply to homes, one can also

maintain public uses of electricity (e.g., from street lights to community elevators), minimizing some of the

costs of rolling blackouts such as increased crime (Imelda and Guo, 2024).

While it seems intuitive that power limits should generate substantial value to households in expectation,

as it provides guaranteed access to electricity, intuition suggests that it may impact a greater number of

households by spreading the burden. Yet, we theoretically show that there exist general conditions under

which power limits leave fewer households affected by the rationing event, making the acceptability of power

limits even more viable. The result works via selection. The distribution of electricity consumption is heavy-

tailed, high-energy users are the ones contributing to demand reductions, contributing disproportionately to

demand reductions. For the rationed households, we highlight the risk reduction properties of the mechanism

and show conditions under which power limits are an ex ante Pareto improvement to risk-averse households.

These conditions depend on the preferences for risk under standard utility functions. We find that, under

reasonable theoretical parameters, power limits may be a “no-brainer.” This result applies to the rationing

of goods whose distribution is heavy-tailed.

Empirically, using data from more than a million Spanish households provided by a regulated distribu-

tion company, we analyze how adjusting household consumption limits in anticipation of a blackout could

improve rationing schemes.7 Specifically, we compare the effectiveness of setting household power limits

versus implementing blackouts in terms of the number of households affected. Simulating random rationing

under varying uniform power limits, we empirically confirm that limiting consumption not only mimics the

electricity reduction effects of a blackout, but also impacts fewer households. We also apply our theoretical

welfare results and empirically examine under which conditions the mechanism can be a Pareto improvement.

What are the welfare implications of using the mechanism? We complement our data with individual

measures of income from Cahana et al. (2024) to assess first whether setting a uniform limit appears to be

regressive, and second how it compares to setting a power limit proportional to the maximum contracted

power that households pay for, which is highly correlated with income.8 We find that high-consumption

households, which tend to be higher-income in our data, are most affected by uniform rationing. Thus, the

approach could reduce the burden on lower-income households who consume less power and may be less

equipped to handle complete outages (Peterson et al., 2024; Ganz et al., 2023). Secondly, electrical heating

also plays a critical role for higher limits that heavily select these users, making the welfare considerations

more nuanced when the targeting of high electricity users is more extreme. Finally, proportional limits

affect more households than under a uniform limit, as high-income households contribute less on average,

6The PUC justified the change to “help ensure prices remain affordable during the upcoming winter season and lessen the
financial risk to customers during scarcity events.” See https://www.reuters.com/markets/commodities/texas-cuts-9000-power-
price-cap-after-february-freeze-2021-12-03/.

7By 2018, 99 percent of Spanish households were equipped with smart meters that already have this capability.
8In Spain, contracted power is the maximum amount of electricity a household can draw from the grid at any moment.

3

https://www.reuters.com/markets/commodities/texas-cuts-9000-power-price-cap-after-february-freeze-2021-12-03/
https://www.reuters.com/markets/commodities/texas-cuts-9000-power-price-cap-after-february-freeze-2021-12-03/


disproportionately impacting lower income households.

In summary, we highlight new shortage mechanisms enabled by smart meters. We provide a framework

for assessing their benefits and costs. In many countries, these mechanisms could easily be implemented

to improve blackout protocols. Indeed, France has already piloted a mechanism for 115,000 consumers in

2024, leveraging their existing smart meter technology.9 Apart from the case of extreme weather, rapidly

growing energy demand or underinvestment in energy infrastructure in emerging economies forces utilities

to implement rolling blackouts on a regular basis in many geographies, as seen in countries like India,

Vietnam, and South Africa. In South Africa, to better manage blackouts, in 2023, the state-owned power

utility proposed installing better smart meters in all South African households over the next four years

(Dludla, 2023). The utility is already piloting these smart meters, which use load-limiting technology as

the one explored in our work to help manage electricity consumption during blackouts (Jacobs, 2023). This

highlights the importance of understanding these mechanisms, which will become more commonplace in the

future.

Related Literature We consider quantity mechanisms during extreme events. These mechanisms are

often necessary during a shortage situation due to the need to ensure that quantity limits are enforced

properly (Weitzman, 1974). Although price increases during shortages can reduce consumption (Grafton

and Ward, 2008), the reduction is usually moderate, leaving prices insufficient to significantly lower demand

(Renwick and Green, 2000). Additionally, while prices are often argued to be efficient, by allocating goods

to those with the highest willingness to pay, they may not be equitable during an extreme event and lead to

substantial utility losses (Weitzman, 1977).

For residential electricity demand, studies have explored alternative market interventions such as price

caps, rationing, political campaigns aimed at reducing demand (He and Tanaka, 2023), or combinations of

these approaches. Tokarski et al. (2023) introduce a threshold-based price cap as a differentiated non-linear

price schedule. This targeted approach encourages wealthier households to subsidize the energy needs of

lower-income ones, unlike uniform price caps. However, price-cap policies have limitations when consumer

price responsiveness is low. To address these concerns, Gerlagh et al. (2022) propose a policy that addresses

inefficiencies in electricity pricing during persistent supply shocks with a temporary, time-varying price cap

that may lead to rationing. This cap adjusts with demand changes, balancing consumption between price-

responsive and non-responsive consumers, an extension of Joskow and Tirole (2007). We differ by focusing

on mechanisms that are invoked under extreme situations, even when the price cap is allowed to be quite

large.

Other studies have explored targeted blackouts as an improved response. For instance, using a household

production function approach based on Becker (1965), de Nooij et al. (2009) examined rolling blackouts versus

efficient rationing at the municipal level in the Netherlands, demonstrating that targeting municipalities with

lower social costs reduces overall social costs. Similarly, Wolf and Wenzel (2015) estimate the cost of short-

run blackouts on the county level in Germany using the production function approach and use these estimate

to compare four different rationing regimes: random rationing, and minimizing total social costs, per capita

damage, and the number of people affected. Their analysis found that strategies focused on minimizing

social costs and impacting fewer individuals tend to reduce damages more effectively, reinforcing our focus

on the number of households as a key objective. Instead of focusing on how to improve rolling blackouts

9See https://www.tf1info.fr/economie/exclusif-limitation-de-puissance-des-compteurs-linky-les-resultats-de-

l-experimentation-d-enedis-2301249.html.
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that apply to large areas, we explore power limits at the household level. However, these could be combined

with other targeting strategies.

We focus on quantity-only mechanisms, but smart meters are already used in many countries in Europe

as part of the pricing contract, to allocate fixed cost. In future work, we plan to explore emergency-

contingent capacity contracts, similar to those used in industrial settings, such as interruptible contracts,

and formally studied in the priority service literature (Chao and Wilson, 1987). Although the burden on

low-income households may be socially unacceptable and the price response may be too uncertain during

extreme events, these contracts may be attractive to increase demand response in the presence of renewable

intermittent sources (Chao et al., 2022).

Our analysis abstracts away from potential investments that households can make to protect themselves

from blackouts (Brown and Muehlenbachs, 2024), which are likely to be adopted by higher income households

(Brehm et al., 2024). To the extent that power limits put the burden on higher income households, the

mechanism might encourage useful investments, although these dynamic considerations are beyond the scope

of the paper.

In summary, this study contributes to the existing literature in three key ways. To our knowledge, this is

one of the first papers to explore the use of smart meters to dynamically limit households’ consumption as

a last-resort measure for reducing energy demand during extreme events. Second, it adds to the literature

on the distributional impacts of rationing, examining how income distribution and households consumption

characteristics influence the effects of rationing policies.

2 A Framework for Power Limits

Consider the following individual net utility from electricity (Weitzman, 1977):

wi(p;λi, ϵi) ≡ ui(xi(p); ϵi)− λi p xi(p),

where ui stands for individual utility dependent on the amount of electricity xi at price p and the need

for electricity ϵi. The net utility can thus be expressed as the difference between the utility and the cost of

electricity, with the cost expressed as the amount of electricity at a given price, normalized by the opportunity

costs of foregone income.

We consider situations in which the price mechanism fails to clear the market, and thus demand cur-

tailment, also called load shedding, is required. More concretely, we consider a situation in which, at p,

D(p) ≡
∑

i xi(p) ≫ S(p). For the purposes of this short paper, we assume that this price limit binds, and

therefore drop the price in the rest of the notation.

Due to the need to curtail demand, the consumption of households will be limited by a rationing mech-

anism that sets a maximum limit κ ∈ [0, κ] to their consumption, such that

xi(κ) = min{xi, κ}.

When κ = 0, consumers cannot use any power, i.e. there is full rationing (a “blackout”). As a normalization,

for κ = κ, there is no rationing. Intermediate values of κ may ration some consumers, but not all.
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2.1 Random access

Under traditional rolling blackouts, a fraction α of consumers gets selected for a blackout and gets zero power

(κ = 0), while the rest remains with provision of service (κ = κ). Under random rationing, total welfare

equals

WB(α) = αW (0) + (1− α)W (κ),

where W represents aggregate welfare, i.e., W (κ) =
∫
i
wi(κ)di.

Notice that α might be small, but the costs to selected consumers can be large if the blackout is severe

under plausible utility functions.

2.2 Random limits

Smart meters allow for individual-specific power limits that are above zeros and can be digitally adjusted

during an extreme event that is known in advance, as during a planned blackout. This is in contrast to

traditional meters, for which their limit cannot be easily adjusted. Although limits can be flexibly set, rules

might need to be simplified in practice due to informational asymmetries. Furthermore, there might be

social consideration on what policies might be considered acceptable, beyond those reflected by the utility

function.

For the purposes of this paper, we consider a special case of a power limits in which households are

randomly selected into rationing with some probability β and, conditional on rationing, they get their

consumption limited to a common threshold κ ∈ (0, κ). This simple rule can be easily conveyed to households.

Because it does not entail targeting or customization, it is simple to implement. It is analogous to a rolling

blackout, but selected households receive access to some electricity, rather than zero.

Under power limits with a limit κ, welfare becomes:

WP (β, κ) = βw(κ) + (1− β)w(κ).

Definition 1. An α-equivalent power-limit policy is a combination of β∗ and κ∗ that is equivalent in

expectation to a blackout of size α, i.e.,

β∗, κ∗ s.t. β∗D(κ∗) + (1− β∗)D = (1− α)D

where D(κ) ≡
∑

i xi(κ).

Under this policy, households get a consumption limit of κ∗ and get selected with probability β∗ so that

total demand is equivalent to a share (1− α) of D.

This simple rule can still provide substantial welfare improvements, as households do not lose their access

to power completely. Additionally, one can maintain electricity for public goods such as street lights. While

this is not modeled explicitly in the framework, it is likely to benefit all households.

Along the blackout-equivalent frontier, maximizing κ by setting β = 1 can be a natural benchmark under

a declining marginal utility of consumption. Setting β = 1 also provides a sense of the maximum power

reductions that can be achieved for a given κ. Under such a rule, all households are selected for a given

power limit, and therefore the maximum equivalent blackout is achieved.

Definition 2. The maximum equivalent blackout that can be achieved by a power limit policy with κ > 0
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is

α(κ) = 1− D(κ)

D
< 1.

This maximum blackout size can be useful to assess the extent to which power limits can mimic the

demand-reduction impact of rolling blackouts, which is an empirical question.

2.3 Effectively rationed households

It seems intuitive that a random power limit should be preferred to rolling blackouts, as it does not leave

any household completely in the dark. However, it can severely limit their consumption and it can create

some practical inconveniences, which we discuss below in more practical detail. Therefore, it is useful to get

a sense of the number of households impacted by the policy.

Definition 3. Denote δ ≡ β/α, i.e., the relative number of households that need to be selected under a power

limit to achieve a blackout of size α. Naturally, for any α-equivalent policy with κ > 0, δ ≥ 1.

As we will show, many of the results will depend on this ratio. It is important to note that β is

endogenously determined as a function of κ and the distribution of demand.

To understand the welfare trade-off between the two mechanisms, it is useful to define not only the share

of households that need to be selected, but the share of affected households for whom the power limit is

biding.

Definition 4. We say that consumers are effectively rationed under a power limit κ if they are selected

and xi > κ. The share of effectively rationed households is ϕ ≡ βPr(xi > κ). The rest of households, 1 − ϕ

are not rationed, even if they are selected.

We find that the number of effectively rationed households is not necessarily larger under a power limit

than a blackout. More concretely, the number of households that are effectively rationed by a power limit

(ϕ) might be less than under a blackout (α) for quite general conditions if the distribution of demand is

sufficiently skewed, which we summarize in Results 1 and 2.

Result 1. Effectively rationed consumers ϕ under an α-equivalent policy are less than those selected by a

blackout of size α as long as,

E[xi|xi > κ]− κ > E[xi].

Whether the power limiting event needs more consumers to limit their consumption depends on the shape

of the distribution of consumption and its tailed nature. For example, under a bounded distribution such

as the uniform, this condition can never hold and ϕ > α.10 However, it is likely to be satisfied by other

distributions, which we characterize below.

Result 2. Under the exponential distribution, E[xi|xi > κ] − κ = E[xi], i.e. the number of households

affected under power limits and blackouts is the same in expectation. Therefore, heavy-tailed distributions

lead to fewer consumers effectively rationed than under a blackout.11

Depending on the distribution of electricity consumption at a given point in time, there could be situations

in which power limits not only avoid blackouts but also effectively bother fewer people. This condition is

satisfied by familiar distributions such as the log-normal distribution or the t-student.12

10Under the uniform U(a, b), E[X | X > κ]− κ− µ = b+κ
2

− κ− b+a
2

= −κ+a
2

< 0.
11Heavy-tailed distributions are those that are heavier-tailed than the exponential distribution.
12Note that this is a sufficient but not necessary condition.
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While the number of households that are affected by the rationing event is the same (or even lower),

it is important to highlight that these are different households. By setting a power limit, the power limit

mechanism finds the heavy users among a larger set of randomly selected households β. This selection effect

is correlated with their consumer characteristics ϵi and λi, which we explore in the empirical section.

Extension to multiple periods When the rationing event lasts more than one period, then it is important

to consider the impact on households for blackouts vs. power limits. Due to the stochastic nature of electricity

consumption, some households may exceed power limits at certain hours, while consuming below the limit

in others, being thus effectively rationed during a subset of hours.

Mathematically, we can interpret this increased probability of being effectively rationed as a function

of the multi-dimensional distribution of electricity consumption during the day. A household is “effectively

bothered” if the first order statistic of xi is larger than κ. The probability of being rationed at least one

hour can be substantially larger than the hourly probability.

The extent to which power limits will affect many households under these broader interpretation is an

empirical question, and it will depend on the within- vs. across-household consumption variation. If electric-

ity consumption is persistent within a households, then the affected consumers are likely to be correlated.

However, if electricity consumption is quite random at the household level, then the households contributing

to demand reductions will change during the day, spreading the burden across consumers depending on the

hour of the day.

Extension to proportional rationing We also examine a second rationing scheme that sets household-

specific consumption limits based on contracted power. In this case, each household’s consumption limit is

determined by a fixed percentage of their contracted power. For example, if the proportional limit is set at

20%, a household with a contracted power of 4 kW would have a consumption limit of 0.8 kW. The probability

of a household being rationed is an empirical question and depends on the ratio of their consumption (xi) to

their contracted power (pi). Whether proportional rationing affects fewer households than rolling blackouts

depends on the joint distribution f(xi, pi) and the absolute value of households consumption xi. A fat-tailed

distribution of the ratio of xi

pi
does not necessarily imply that this rationing scheme targets high consumers,

as the ratio can both be high for low consumers with low contracted power and high consumers with high

contracted power.

2.4 Welfare considerations

Given the severity of blackouts, which provide a consumption of zero to households during the event, we

may expect power limits to improve overall average welfare. In fact, this is true by construction, at least

weakly, as a power limit equivalent to a rolling blackout remains in the feasible set.

A harder question is under which conditions a power limit can be a Pareto improvement. For households

with consumption below the limit, it is a strict improvement, as they are unaffected by the event. For the

rest of households, their welfare change will be determined by the concavity of the utility function, which

determines the aversion of households to a blackout.

For households with xi > κ, whether they are better off under a power limit scheme will depend on their

consumption and risk tolerance. Households will be better off as long as,

βU(κ) + (1− β)U(x) > αU(0) + (1− α)U(x).
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Under the stylized case in which U(0) → −∞, all households prefer power limits. For example, with a

constant relative risk aversion (CRRA) utility function, U(c) = c1−γ

1−γ , power limits are a Pareto improvement

for all households as long as γ ≥ 1, as highlighted by Result 3 below. One can also work with a utility function

that is bounded below, such as the constant absolute risk aversion (CARA) utility function, U(c) = −e−ρc.

The CARA utility function is, however, bounded above by zero. Therefore, under plausible risk aversion

parameters, one can still conclude that all households are better off due to the substantial decreasing marginal

utility of electricity consumption.

For these two stylized utility functions, we derive conditions under which a power limit is a Pareto

improvement.

Result 3. Under CRRA utility function and γ ≥ 1, all households are better off with power limits. Under

CARA utility function and for an α-equivalent power limit policy {β, κ}, there exists a risk aversion parameter

ρ above which all households are better off, given by ρ = log(δ)
κ .13

Intuitively, a large κ will make the risk aversion limit lower, as consumption gets censored where its

marginal utility has declined. Contrarily, a higher β relative to α, i.e., higher δ, will make the needed limit

higher, as households are penalized more often. In equilibrium, β and κ are jointly determined, and which

of the two effects dominates will depend on the distribution of consumption.

One can also consider the level of consumption that makes a household indifferent, holding the level of

risk aversion constant. We calculate this in Result 4.

Result 4. Under CRRA utility function and γ < 1, households with consumption cCRRA =
(

δ
δ−1

) 1
1−γ

κ

experience a Pareto improvement. Under CARA utility, for a given level of risk aversion ρ, households with

consumption below cCARA = 1
ρ log

(
1−δ

1−δe−ρκ

)
experience a Pareto improvement.

This limit is naturally above the actual power limit and increases with risk aversion, as households are

more willing to be partially rationed if they are averse to a blackout. Whether the consumption limit is

increasing or not in κ in absolute terms, holding γ constant, depends on the values of δ and κ, which are

jointly determined and a function of the empirical distribution of demand.14

Although these are admittedly stylized representations of utility, they can provide an additional theoret-

ical rationale for their welfare benefits with respect to a blackout.

3 Empirical assessment

We use smart meter data from nearly 1.3 million Spanish households to compare power limits to rolling

blackouts. The data covers the period from January 1st, 2016, to April 30th, 2017 and it was by one of the

largest Spanish utility companies. The geographic distribution of households is shown in the Appendix in

Figure A.1.

Spain provides a good application as power limits are already available and part of the contracting

environment. Smart meters let utilities set a maximum electricity consumption level per household, known as

the “contracted power.” This power limit does not reduce the flow of electricity but ensures that consumption

stays within the specified limit. If a household electricity consumption exceeds this limit systematically, the

13The result for the CARA utility function derives from noting that the utility limits to zero as consumption goes to infinity.
therefore, the condition is satisfied when αU(0) = βU(κ), which leads to −α = −β exp−ρκ .

14In our application, we find that, for low levels of risk aversion, the effect of κ dominates. Thus, more households consider
the mechanism a Pareto improvement with higher κ, even restricting the attention to households that are always affected.
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circuit breaker trips.15 To restore power without another disconnection, households must first reduce usage,

such as by unplugging appliances, and reconnect (remotely or at home). If the household is empty during

the power cut or unable to react, the disconnection may cause welfare losses (e.g. spoiled food).16

The data include hourly electricity consumption (kWh) at the household level, their contracted power, and

their postal code. We combine these data with estimates of household-specific income and heating/cooling

mode (HVAC) from Cahana et al. (2024). Income and HVAC estimates are derived by analyzing electricity

consumption patterns and contracted power, which correlates with income due to its impact on electricity

bills and appliance ownership. Additionally, a k-means clustering algorithm groups households based on 198

consumption-related variables, allowing for the estimation of income distributions at the household level.

We use these measures as a proxy for λi (income) and ϵi (HVAC) to explore the heterogeneous impacts of

the proposed mechanism.

Table 1 summarizes electricity consumption across HVAC modes and income quintiles. Households with

heating and cooling systems have the highest average and maximum daily consumption, while those without

HVAC systems have the lowest. Both average consumption and contracted power rise from the lowest to the

highest income quintile, indicating a positive correlation between income, electricity usage, and contracted

power.

3.1 Simulating power limits

Our simulated power limits will consider the thought experiment in which the Spanish utility exceptionally

adjusts the contracted power of households during an extreme event, which would be communicated in a

similar fashion as a rolling blackout, but with consumption limits.17

In practical terms, we examine consumption limits, κ ∈ {0, 0.25, 0.5, 1, 2}, in kWh per hour, where, κ = 0

represents a blackout and values greater than 0 indicate a power limit. Conditional on being selected for

with a limit κ, we assume that household i’s consumption at time t is given by Dr
it(κ) = min{Dit, κ}, where

Dit denotes the observed consumption.18

Note that our calculation imposes consumption limits in kWh, but power limits are enforced in kW. This

raises concerns as some appliances with cyclical electricity and high startup surges (e.g. refrigerators, air-

conditioner) cause short-term spikes in consumption, where a household temporarily exceeds the consumption

limit (kW), even if total hourly consumption (kWh) remains within bounds. We are limited by the hourly

nature of our data, but the impact on our results is attenuated for the following reasons. First, short-lived

fluctuations do not trigger power limits, as the smart meter will tolerate temporary overages. Secondly, as

shown in A.4, our results are robust to excluding households with high-consuming cyclical appliances such

as air-conditioning and heating.

15Voltage and amperage levels remain within standard operating ranges, preventing damage to electrical and electronic
equipment.

16With minor changes to the electrical panels of households, utilities can automatically reconnect households at the end of
the event. If many households are unaware or absent, the mechanism approaches a rolling blackout in the limit.

17Advance notifications could include guidance on which appliances could be used, depending on the limit. This approach
could help address concerns about households’ limited knowledge of their appliances’ power consumption, leading to inefficient
energy use and recurrent power cuts (Chen et al., 2015; Attari et al., 2010). In our empirical context, households are familiar
with power limits, making these concerns less severe.

18Note that this provides a conservative amount of rationing, as in practice most households would default into consumption
substantially smaller than κ. However, it presents a best-case scenario for welfare, as households obtain their maximum
constrained utility under the power limit.
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3.2 Blackout-equivalent frontier

For each power limit, we compute how many households must be selected to achieve the same energy

reduction relative to a blackout, denoted by δ (light bars in Figure 1). By construction δ = 1 for the case

of a blackout (κ = 0). For the case of κ = 2, an average of twelve households would need to be selected,

for each household experiencing a blackout, to achieve the same reduction in electricity. One can see that δ

grows more than linearly as a function of the limit, denoting that selection increases.

Indeed, being selected for rationing does not mean all households are fully rationed; it is only binding

if their usage exceeds κ (dark bars in Figure 1). As κ increases, more households need to be selected for

rationing, but fewer are effectively rationed. For κ = 2, for each twelve households selected, much less than

one is actually impacted by rationing. As a result, the average consumption of rationed households rises, as

savings are concentrated among a smaller, more heavily rationed group.

Introducing daily rationing, in which households are selected for all hours of one day, naturally increases

the probability of effective rationing. However, not all hours in a day are affected by rationing. For κ = 0.25,

only about 34 percent of all hours in a day are effectively rationed (red circles in Fig 1), and this number

goes further down as the limit increases. The number of households affected during a daily power limit tend

to increase under mid-range rationing rules, as variance in consumption within a household will tip them

over the limit at some point during the day. As the limit grows, when κ = 2, the number of households

necessary for an equivalent blackout decreases again, as a larger proportion of households remain unaffected

by the limit throughout the day.

For proportional limits, we find the percentage of the allowed limit that leads to equivalent energy

reductions. Equivalent limits for 0.25, 0.5, 1, and 2 kW caps are 6.5%, 12.5%, 25%, and 46.5% of contracted

power. Although both schemes affect fewer households compared to blackouts, proportional limits impact

more of them, especially at higher limits (hourly-proportional bar in Figure 1). At a 0.25 kW limit (6. 5%

limit), 9% more households are rationed than under a uniform rule, and at 2 kW (46.5%), 48% more are

affected, shifting the burden to smaller consumers.

3.3 Utility-based indifference frontier

Using the estimated rationing probabilities from Figure 1, we estimate the risk-aversion consumption in-

difference frontier. Figure A.2a depicts the consumption frontier for the CRRA utility function for values

of risk aversion below one. The frontier follows a similar pattern across limits: when households are not

risk-averse, the indifference point is close to the limit, but it grows exponentially as risk aversion approaches

one. We find that the consumption frontier expands faster for lower consumption limits, driven by the fact

that the burden is spread across more households and, thus, the additional sampling of households compared

to a blackout (δ) is lower. For higher limits, effectively rationed households require greater risk aversion for

rationing to be a Pareto improvement.

Figure A.2b depicts the same frontier for the CARA utility function. Highly risk-averse households

derive significant utility from guaranteed electricity access, even if limited, with indifference consumption

substantially above the limit. Conversely, individuals with higher consumption levels and lower risk aversion

tend to prefer blackouts over rationing, as their utility function is less concave. For households that are

not risk averse, the frontier converges to κ: households prefer a lower probability of a blackout than being

selected more often.

For the CARA utility, there exists a threshold ρ above which all households prefer power limits. As κ
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increases, this threshold decreases, meaning that households need to be less risk-averse in order to prefer limits

over blackouts. This implies that high limits are a Pareto improvement for a larger set of households. Overall,

these simulations highlight the value of power limits in mitigating extreme utility losses from blackouts.

3.4 Income and alternative limits

We calculate the probability of being rationed conditional on income quintiles. The probabilities of rationing

vary significantly between income groups, with uniform power limits being mostly progressive and propor-

tional limits being clearly regressive (see Figure 2). Under uniform limits, higher-income households are more

likely to be rationed than lower-income households. This effect is particularly strong for households without

heating or cooling appliances, where high-income households face an even greater likelihood of rationing (see

Figure A.3). Due to the higher ownership of electric heating by low-income households, particularly in the

Madrid region (Cahana et al., 2024), high limits can eventually be regressive due to the compositional mix

in the HVAC mode.

In contrast, proportional limits clearly disproportionately affect lower-income households. This is the

result of the ratio of household consumption relative to contracted power: higher-income households tend to

contract higher power limits, paying for a buffer that protects them. In contrast, lower-income households,

which contract power closer to their actual consumption to minimize costs, face a higher likelihood of being

rationed due to more restrictive consumption limits.

The external validity of these results relies on the observed positive correlation between income, high

electricity consumption, and contracted power. Although higher income is generally associated with greater

electricity use (Kotsila and Polychronidou, 2021; Huang, 2015; Romero-Jordán et al., 2014), other factors

such as household size, energy efficiency, appliance use, and insulation can play crucial roles in influencing

consumption. As noted in Borenstein (2024), policies aimed at high electricity users may not necessarily

target high-income households, as consumption patterns can vary regionally, change with the adoption of

solar rooftops by wealthier households, and are influenced by other non-income factors. Therefore, the power

limit scheme could be further refined with observable household attributes, such as household size, climate

zones, or heating type, similar to how non-linear electricity rates can depend on heating mode in states like

California.

4 Conclusions

We develop and analyze a novel power limit mechanism, leveraging smart meter technology to limit house-

hold electricity consumption only during periods of potential shortages. Rather than implementing rolling

blackouts, our mechanism ensures that households retain access to essential services like refrigeration and

lighting by capping electricity usage at individualized limits. Through theoretical modeling and empirical

analysis using data from more than a million Spanish households, we show that power limits affect fewer

households than rolling blackouts. In addition, we find that under reasonable conditions, power limits can

be a Pareto improvement for many households.

Our analysis opens several avenues for future research. How should more flexible blackout policies be im-

plemented? Should the price mechanism be considered to manage scarcity conditions during extreme events?

Should power limits, combined with pricing schemes, be used more broadly under less severe conditions to

manage renewable intermittency? We leave these questions open for future research.
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Tables and Figures

Table 1: Summary of Household Electricity Consumption

c sd cmax CP θh θc N

Full sample 0.34 0.26 1.06 4.12 18.0 15.9 1,277,633
(0.38) (0.30) (0.98) (1.51)

By HVAC

No Heating or Cooling 0.24 0.18 0.79 3.89 891,654
(0.21) (0.15) (0.57) (1.39)

Only Cooling 0.40 0.27 1.16 4.39 156,219
(0.39) (0.21) (0.78) (1.73)

Only Heating 0.66 0.55 1.99 4.75 182,959
(0.61) (0.51) (1.52) (1.41)

Heating and Cooling 0.75 0.27 2.20 5.13 46,801
(0.61) (0.49) (1.55) (1.80)

By Income Quintile

Q 1 0.32 0.24 0.96 3.36 4.9 2.7 249,319
(0.09) (0.10) (0.36) (1.23)

Q 2 0.34 0.26 1.05 3.88 4.3 2.9 256,657
(0.10) (0.11) (0.40) (1.46)

Q 3 0.34 0.26 1.06 4.16 3.6 3.1 258,014
(0.10) (0.11) (0.41) (1.50)

Q 4 0.34 0.27 1.09 4.45 2.9 3.2 259,981
(0.10) (0.11) (0.43) (1.50)

Q 5 0.36 0.28 1.14 4.72 2.6 3.3 253,661
(0.11) (0.12) (0.46) (1.45)

Notes: The unit of observation is a household (meter). c is the average hourly consumption, sd
is the average daily standard deviation, and cmax is the average maximum daily (all in kWh).
CP (contracted power) represents the maximum power a household can contractually consume
at any instant (in kW). The θh represents the share of households with electric heating, while θc
represents the share with cooling.
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Figure 1: Comparing the performance of blackouts vs. power limits
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Notes: This figures shows rationing outcomes from hourly data of 1.28 million households. On the left-axis,
one can see the rationed households vs. those experiencing a blackout, i.e., β/α. Selected households are
displayed in light green, while rationed households for a given hour are displayed in dark green and households
rationed at least one hour in a day are display in teal. On the right-axis, one can see the percentage of hours
that households are rationed (red circles) and the maximum attainable size of a blackout that can be achieved
with a limit κ (orange diamonds). For κ = 2 , the maximum blackout-equivalent reduction is about 8%,
achieving substantial savings while still allowing significant power use.
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Figure 2: Probability of rationing as a function of income
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limits (b and d) both in absolute (a and b) and relative (c and d) terms. Power limits for uniform rationing
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A Additional Online Material (non-essential)

Figure A.1: Map of households in the distribution area
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Figure A.2: Pareto-indifference curve between a blackout and power limits
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Notes: The results plot the consumption indifference point for varying values of γ between a probability of
blackout of five percent (α = 0.05) and an α-equivalent power limit mechanism with limit κ. For the CARA
utility, we use a conversion between kWh to Euros using a value of lost load (VOLL) of 6 EUR/kWh so that
the lottery can be interpreted as an hourly bargain in EUR.
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Figure A.3: Probability of rationing as a function of income and HVAC use
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Heating:TRUE is an indicator of whether a household is estimated to have electric heating. Cooling:TRUE
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Figure A.4: Relative probability of rationing as a function of income for uniform and proportional rationing
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Notes: This figure compares the relative probability of rationing for uniform rationing (left-hand side) and
proportional rationing (right-hand side). For uniform rationing (proportional rationing), the figure shows
the probability of a household getting rationed relative to the conditional probability of the lowest (highest)
income quintile, Q1 (Q5). Heating:TRUE is an indicator of whether a household is estimated to have electric
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