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This appendix contains complementary material for the paper “Complementary Bidding Mech-
anisms and Startup Costs in Electricity Markets.” It contains a description of the market mechanism
and the data sources used. It also contains a discussion of the model main assumptions. It includes
a description of the methods used to compute the optimal strategy of a strategic firm. Finally, it
contains additional tables and graphs that complement the main text.

A The ISO algorithm

I explain the details of the pseudo-algorithm that I use to replicate the independent system operator
(ISO) algorithm. First, I discuss the actual algorithm used by the ISO and explain how the algo-
rithm is approximated in my application. Then, I compare predicted and actual market outcomes
for a set of 120 days in the sample.

A.1 Details of the actual algorithm

The official algorithm used by the ISO to compute the market outcomes of the day-ahead market
is explained in the “Appendix on the Functioning of the Wholesale Electricity Day-Ahead and
Intra-day Markets.”1 I outline the major steps that are taken to solve for the optimal dispatch.

After receiving and verifying the supply and demand offers made by the market participants,
the ISO solves for the optimal dispatch using the following order:

1. Construct aggregate supply and demand curves from simple bids taking into account merit
order rules and interconnection constraints.

2. Solve for the optimal dispatch using these aggregate curves (uniform auction rule). Use
established rules to deal with indivisible steps and ties.

3. Check ramping constraints at the unit level and change quantities to satisfy them (only check
once for ramping up and once for ramping down).

1Boletı́n Oficial del Estado num. 128, 05/30/2006, pp. 20157-20192 (in Spanish).
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4. Order the units with complex bids whose minimum revenue constraints are not satisfied
according to the difference between their average required price and the average price they
receive.

5. Discard the unit whose deviation is largest.

6. Repeat 1 to 5 until no complex bid binds. This is the provisional solution.

7. Order units with complex bids that have been discarded according to the difference between
their average required price and the average price they would receive at current prices. Note
that some units that have been discarded might be willing to produce at current prices.

8. Use the resulting merit order from step 7 in step 4 when repeating 1 to 5, again until no
complex bid binds, to obtain a new provisional solution.

9. Repeat 7 to 8 until no discarded units would be willing to produce at current prices or stop
if time exceeds 30 minutes or number of iteration is larger than 3,000, taking the provisional
solution that minimizes the foregone rents of discarded units that would be willing to produce
at current prices. This is the final solution.

Mimicking the ISO algorithm poses some challenges. In particular, the ISO algorithm can take
up to 30 minutes to complete, which is computationally not feasible in my application, in which
I need to simulate hundreds of market outcomes for each firm and each day. Furthermore, the
treatment of the interconnections requires some information that I do not have available. For this
reasons, it is important to approximate the ISO in an heuristic manner.

A.2 Details of the pseudo-algorithm

Implementing the ISO algorithm exactly is not possible for two main reasons. On the one hand,
I do not have the information necessary to account for congestion at the interconnections. On the
other hand, the procedure is computationally very costly. The ISO allows the algorithm to do up
to 3,000 iterations during up to 30 minutes. However, for estimation purposes, I need to simulate
market outcomes thousands of times. Therefore, there is a need to trade-off the trustworthiness of
the pseudo-algorithm with its computational efficiency, but trying to preserve the actual outcomes
of the algorithm as much as possible.

I follow Garcia et al. (1999) to implement an heuristic ISO algorithm as a mixed integer linear
programming problem.2 This problems takes into account the ramping constraints submitted by

2Garcı́a, Javier, Jaime Román, Julián Barquı́n, and Avelino González. 1999. Modelo de Casación de Ofertas para
el Mercado Diario mediante Programación Lineal Entera-Mixta (in Spanish). 6a Jornadas Hispano-Lusas de Ingeniera
Elctrica, 4: 605616.
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the units, as well as the indivisibility conditions of the steps as a single maximization problem.
The minimum revenue requirements are dealt in a similar fashion than the actual ISO algorithm,
although I only allow for one iteration. I check that this does not produce very different outcomes
using additional methods that iterate more than once.

The pseudo-algorithm is programmed as follows:

1. Solve a mixed-integer linear program that includes indivisibility and ramping constraints.

2. Order the units with complex bids whose minimum revenue requirements are not satisfied
according to the difference between their average required price and the average price they
receive.

3. Discard the unit whose deviation is largest.

4. Repeat 1 to 3 until no complex bid binds.

The pseudo-algorithm is implemented in Java and the mixed-integer linear program is solved
using the solver CPLEX 12.0, which is very efficient for this type of problems.3

A.3 Simulations to assess the performance of the pseudo-algorithm

I present a comparison of actual and predicted prices by the pseudo-algorithm in Table A.1. The
algorithm predicts the prices accurately and the difference between the two is not significant for
any hour of the day. The overall error is small, with a mean close to zero. The predicted prices
also present the same standard deviation as actual prices.

I also implement different version of the algorithm, some of which relax the integer constraints.
Some other algorithms allow for a certain degree of iteration, following the minimization criteria
used by the ISO. Overall, I find that the pseudo-algorithms replicate very accurately the patterns
across the different hours of the day. Results are presented in Table A.1.

3This solver is available for free to the academic community through IBM.

3



Table A.1: Price predicted and simulation error at the hourly level

Hour MgPrice Alg 1 Alg 2 Alg 3 Alg 4 ∆1 ∆2 ∆3 ∆4
1 33.20 33.11 33.23 33.16 33.21 -0.09 0.03 -0.04 0.01

(6.98) (6.91) (6.96) (7.04) (7.06) (0.83) (1.19) (0.95) (0.97)
2 29.77 29.98 30.07 29.97 29.98 0.20 0.30 0.19 0.21

(5.40) (5.39) (5.36) (5.46) (5.45) (1.03) (0.96) (0.88) (0.86)
3 26.57 26.90 26.90 26.81 26.88 0.33 0.33 0.24 0.30

(4.24) (4.39) (4.33) (4.44) (4.33) (0.75) (0.64) (0.71) (0.70)
4 25.45 25.63 25.67 25.64 25.71 0.18 0.22 0.19 0.26

(3.86) (3.99) (4.02) (3.97) (3.81) (0.70) (0.76) (0.68) (0.67)
5 24.47 24.66 24.66 24.66 24.75 0.19 0.19 0.19 0.28

(3.98) (3.98) (3.99) (3.98) (3.91) (0.59) (0.61) (0.59) (0.52)
6 24.47 24.72 24.71 24.61 24.71 0.25 0.24 0.14 0.24

(3.53) (3.49) (3.49) (3.50) (3.35) (0.56) (0.58) (0.47) (0.50)
7 26.82 27.03 27.00 26.95 27.03 0.21 0.18 0.13 0.21

(3.76) (3.57) (3.56) (3.62) (3.41) (0.89) (0.88) (0.72) (0.70)
8 30.39 30.73 30.70 30.74 30.81 0.33 0.31 0.35 0.42

(6.28) (6.25) (6.29) (6.28) (6.23) (1.09) (1.34) (1.07) (1.12)
9 33.87 34.00 33.83 34.02 34.08 0.13 -0.04 0.15 0.21

(7.71) (7.50) (7.47) (7.52) (7.47) (1.09) (1.23) (1.11) (1.14)
10 36.51 36.69 36.43 36.68 36.73 0.18 -0.07 0.18 0.22

(7.84) (7.87) (7.80) (7.89) (7.93) (1.17) (1.33) (1.16) (1.20)
11 39.93 39.84 39.49 39.86 39.93 -0.10 -0.44 -0.07 -0.00

(8.08) (8.23) (8.17) (8.23) (8.25) (1.26) (1.27) (1.25) (1.24)
12 41.44 41.44 40.99 41.46 41.51 -0.00 -0.44 0.02 0.07

(8.81) (8.97) (8.90) (8.95) (8.90) (1.30) (1.60) (1.18) (1.17)
13 41.97 42.04 41.56 42.05 42.06 0.07 -0.41 0.08 0.09

(9.40) (9.50) (9.42) (9.49) (9.47) (1.28) (1.64) (1.20) (1.19)
14 40.23 40.29 39.91 40.30 40.34 0.06 -0.32 0.07 0.11

(8.73) (8.74) (8.76) (8.73) (8.78) (1.19) (1.48) (1.11) (1.14)
15 37.34 37.41 37.10 37.45 37.47 0.08 -0.23 0.11 0.13

(8.12) (8.03) (8.09) (8.03) (8.07) (1.12) (1.26) (1.06) (1.04)
16 36.12 36.06 35.72 36.07 36.09 -0.06 -0.40 -0.05 -0.03

(8.59) (8.60) (8.57) (8.61) (8.62) (1.14) (1.22) (1.11) (1.07)
17 35.96 35.84 35.44 35.82 35.85 -0.12 -0.52 -0.15 -0.11

(9.30) (9.18) (9.21) (9.16) (9.14) (1.01) (1.37) (0.93) (0.89)
18 36.21 36.02 35.65 36.00 36.01 -0.19 -0.56 -0.21 -0.21

(9.78) (9.56) (9.52) (9.57) (9.61) (1.00) (1.13) (0.98) (0.87)
19 35.00 35.07 34.69 35.08 35.14 0.07 -0.31 0.08 0.14

(8.87) (8.63) (8.65) (8.63) (8.61) (0.96) (1.21) (0.93) (0.92)
20 34.30 34.33 33.97 34.30 34.32 0.03 -0.33 0.00 0.02

(6.63) (6.46) (6.39) (6.50) (6.47) (1.22) (1.49) (1.21) (1.20)
21 35.93 35.33 34.79 35.40 35.51 -0.60 -1.14 -0.53 -0.42

(6.31) (6.29) (6.04) (6.32) (6.30) (1.92) (2.24) (1.64) (1.61)
22 42.35 41.73 41.10 41.78 41.72 -0.62 -1.24 -0.57 -0.63

(9.12) (9.40) (8.91) (9.31) (9.19) (1.90) (2.25) (1.70) (1.90)
23 38.82 38.53 38.11 38.54 38.57 -0.30 -0.72 -0.29 -0.26

(7.37) (7.50) (7.25) (7.51) (7.47) (1.35) (1.61) (1.37) (1.20)
24 32.72 32.82 32.37 32.80 32.81 0.10 -0.34 0.09 0.10

(5.32) (5.61) (5.34) (5.65) (5.58) (1.20) (1.30) (1.19) (1.17)
Total 34.16 34.17 33.92 34.17 34.22 0.01 -0.24 0.01 0.06

(9.07) (8.99) (8.83) (9.01) (8.98) (1.17) (1.40) (1.11) (1.11)
Notes: Monte Carlo simulation covers the period of March-June of 2007. Prices are in e/MWh.
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B Data sources

The major part of the data is obtained from the Market Operator website, http://www.omel.es.
I obtain the bidding data from the bidding files DET and CAB. Physical bilateral contracts are
obtained from the PDBF files. Congestion restrictions are obtained from the PDVD files as well
as from the System Operator I90 form, http://www.esios.ree.es. Similarly, unavailability of units
as well as the reason of the unavailability are obtained from the INDIP files and the I90 form.
Outcomes of sequential markets as well as final dispatch data are obtained from the PHF files.

Plant characteristics are obtained from the annual statistic reports of the System Operator as
well as from the structural data in their website. These include maximum capacity, vintage and
main type of fuel. I complement the data set with fuel mix obtained from the Ministry of Industry
registrar as well as emission rates obtained from the EPER registrar. I also obtain engineering ther-
mal rates for previously regulated plants from the National Energy Commission and the Ministry
of Industry.

I complement the data set with other information available at the System Operator’s website. I
acquire demand and wind production forecasts, which are made available before the auction is run
to reduce balancing needs in real-time. The files are DEMAND AUX and PREVEOL. I also get
commodity price data to include it in the cost estimation. I use NBP day ahead prices for natural
gas (UK), API coal indexes, and European ARA prices for low sulfur fuel-oil and gas oil.

C Model assumptions

C.1 Assumption regarding threshold for complex bids

In the bidding model, I assume that a unit is accepted whenever its minimum revenue requirement
is satisfied, and rejected otherwise. However, in practice, not all units that have their minimum
revenue requirement satisfied are turned on. The reason behind this mismatch is due to the discrete
and lumpy nature of the bidding mechanism. When a unit is taken out from the market, prices can
jump up. Thus, the new prices could satisfy the revenue requirement of the unit just taken out, and
there would be no equilibrium possible. Similarly, units can be taken out in different order and
achieve a different equilibrium. In this section, I examine the relevance of such deviations.

The ISO minimizes the revenue of units that are taken out from the market but would have
been willing to produce at final prices. As a result, in practice deviations from this rule of thumb
are not important. In particular, only in 2 to 3% of the cases a unit is taken out from the supply
curve, but it could have covered its minimum revenue requirement. Furthermore, the revenue
obtained in such cases is not far from zero. On average, these units could have received 3,800e in
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net revenue, compared to the average 41,406e net revenue of the average accepted units and the
average 220,005e gross revenue requirement.

Overall, this evidence suggests that the stylized rule of thumb, which accepts a unit if the min-
imum revenue requirement is satisfied and discards it otherwise, characterizes well the underlying
data generation process.

C.2 Discussion regarding marginal effects of simple bids

This section provides an empirical verification that the term assumed to be negligible in Assump-
tion 1 is indeed small. In other words, I show that the effect of marginal changes of simple hourly
bids on expected profits due to the changes on the probability of a complex bid being binding is
negligible. In addition, I show that ignoring this effect does not seem to be a potential source of
bias in the estimation.

First, I calculate the probability of a bid being binding and the revenue requirement being just
satisfied. Then, I show that for plausible (estimated) parameter values, the contribution to the total
derivative coming from changes in the probability of a bid being binding (holding profits constant)
is small compared to the contribution coming from changes in profits (holding probabilities con-
stant). Finally, I show that the omitted term coming is not particularly correlated with the elements
included in the main empirical specification, which could be a potential source of bias.

The probability. I first compute the empirical probabilities Pr(Rik = 0|bijk = ph), Pr(Rjk =

0) and Pr(bijk = ph) using data from the market. Empirically, the probability that the minimum
revenue requirement is just satisfied is zero, and thus, Pr(Rik = 0|bijk = ph) = 0 and Pr(Rjk =

0) = 0. The probability of a given bid setting the price is Pr(bijk = ph) = 0.35% (note that
I disregard extreme bids, as those are not valid for the first order condition and not used in the
estimation, using the full sample Pr(bijk = ph) = 0.24%). As one can see, the probability of
setting the price is still relatively small.

If I take a broader definition of satisfying this equalities, rounding prices to e terms and round-
ing the minimum revenue requirement to average price terms (Rij/Qj), I find that Pr(||bijk|| =

||ph||) = 3.92% and, conditional on submitting a complex bid, Pr(||Rjk/Qj|| = 0) = 3.71%. The
joint probability is much smaller relative to the probability of setting the price, with Pr(||Rjk/Qj|| =
0 & ||bijk|| = ||ph||) = 0.16%.
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Assessing relative magnitudes. I now show that the relative contribution of marginal effects due
to probability changes are very small when compared to the marginal effects of bids on profits.∑

s∈S
∂Pr(s)
∂bjkh

E[Πi(σi, σ−i)|s]∑
s∈S Pr(s)

∂E[Πi(σi,σ−i)|s]
∂bjkh

,

which is the ratio of the contributions to the FOC due to the changes in the probabilities relative to
changes on profits. Note that the numerator can be computed as

Pr(bjkh = ph)
∑
l

Pr(ρ(Ril) = 0|bjkh = ph)E[Πlin
i − Πlout

i |ρ(Ril) = 0, bjkh = ph].

This ratio is no greater than 10.55% on average, with an interquartile range with value of zero and
median value 0. Trimming the outliers from the simulated outcomes (top and bottom 0.5%), this
average ratio is reduced to 1.98%.

Assumption 1 and omitted variable bias. Finally, I check that the term

∑
s∈S

∂Pr(s)

∂bjkh
E[Πi(σi, σ−i)|s]

does not systematically correlate with either simple bids, the markup variable in the simple bids
and the main term in the FOC, which are included in the main regression. The raw correlations
between these terms and the omitted term is small (0.02-0.05) and not significant, both on average
across units and conditional on a given unit.

D Computational model

In this section, I describe how the best response of the firm is computed in the presence of startup
costs as a linear mixed integer program. Both the strategic firm problem and the competitive
experiment are defined.

Strategic firm The problem of the firm is to maximize profits given the shape of the residual
demand. In the computational model, one can solve the optimal strategy choosing the quantity
produced by each unit at each hour of the day, taking into account the cost structure of the units
and taking the strategies of other firms as given (best response).

As shown in equation (1) below, the firm maximizes gross revenue minus production costs.
The gross revenue depends on the total quantity produced by the firm, which in equilibrium equals
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the residual demand. The costs depend on the hourly production at the unit level. Units have both
a minimum and a maximum capacity. Units incur a startup cost βj whenever they turn on, and
therefore production involves discrete decisions. The startup cost is set to zero in the experiments
without dynamic costs. To account for linkages across several days, the model considers a finite
horizon problem, in which firms look at five days ahead. For each day, the optimal strategy is
optimized with firms considering expected market outcomes in the following days.

Solving for the global optimum of the problem of the firm can be time consuming, as there are
many combinations of on/off patterns that are available.4 To reduce the dimensionality of problem,
I approximate the many steps of the residual demand with a piece-wise linear function in incre-
ments of 160MWh. To preserve the linearity of the problem, I approximate the gross revenue of the
firm using a piece-wise linear approximation as well. Similarly, in order to represent the quadratic
costs at the unit level, the quantity levels at the unit level are discretized into different steps. As
the number of steps increases, the solution approximates one in which no linear approximation is
being made.

The linearity of the program is preserved to ensure that the global optimum is found and that
computational time is fast. In the actual calculations, the number of linear pieces for both the gross
revenue and residual demand is set to 35. To solve the model, I use CPLEX, a mixed-integer solver
that is available for free to the academic community through IBM. Note that the optimal solution
depends on the estimated parameters, {α, β, γ}.

Omitting the firm i subscript for clarity, the mathematical program is described as follows:

max
{qt,ut,yt}

τ+5∑
t=τ

24∑
h=1

(
GRth(DRth, γ)−

J∑
j=1

(
K∑
k=1

αjkqjkth + βjyjth)
)

(1)

s.t.

[Market Clearing] DRth =
∑J

j=1 qjth, ∀t, h,
[Capacity Constraint] ujthKj ≤

∑K
k=1 qjkth ≤ ujthKj , ∀j, t, h,

[Startup Constraint] yjth = 1(ujt,h > ujt,h−1), ∀j, t, h > 1,

yjth = 1(ujt,1 > ujt−1,24), ∀j, t, h = 1,

[Positive Quantities] qjkth ≥ 0, ∀j, k, t, h,
[Integer Constraint] ujth ∈ {0, 1}, yjth ∈ {0, 1}, ∀j, t, h.

4For example, for a problem with 5 days, 24 hours and 8 power plants, there are 22080 combinations of on/off
patterns.
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where

t day index,
h hours of the day, h = 1, ..., 24,
j unit index, j = 1, ..., J ,
k quantity steps at the unit level, k = 1, ...,K,
qjkth quantity produced by unit j at step k, day t and hour h,
ujth run indicator, takes value of one if unit is on in day t and hour h,
yjth startup indicator, takes value of one if unit starts up in day t and hour h,
DRth residual demand function (piecewise linear approximation, uses auxiliary integer variables),
GRth gross revenue function (piecewise linear approximation, uses auxiliary integer variables),
Cjt daily costs of production.

Cost minimization The competitive counterfactual is defined as the outcome that minimizes pro-
duction costs, instead of maximizing profits. Because the experiments consider unilateral market
power, the strategies of other firms are also held constant, as in the strategic case.

Production costs for the firm at consideration are taken from the structural cost function, as
in the strategic model (see equation (2) below). One still needs to define the costs of producing
with other units. For the other firms, their offers at the day-ahead market are used. Therefore, the
program solves for the cost-minimizing strategy of the firm, given other firms market strategies.
This would be the competitive solution if other firms were bidding truthfully, but in general it
should be interpreted as the competitive strategy of the firm, holding market offers from other
firms constant.

As in the strategic case, to solve the model, I use CPLEX, a mixed-integer solver that is avail-
able for free to the academic community through IBM. Note that the optimal solution depends on
the estimated cost parameters, {α, β}, but not on the forward position γ. This is because the opti-
mal social planner solution is not affected by the strategic position of the firm, which is determined
by this parameter.

Omitting the firm i subscript for clarity, the mathematical program is described as follows:

min
{qt,ut,yt}

τ+5∑
t=τ

24∑
h=1

(
OCth(DRth) +

J∑
j=1

(

K∑
k=1

αjkqjkth + βjyjth)
)

s.t.

[Market Clearing] DRth =
∑J

j=1 qjth, ∀t, h,
[Capacity Constraint] ujthKj ≤

∑K
k=1 qjkth ≤ ujthKj , ∀j, t, h,

[Startup Constraint] yjth = 1(ujt,h > ujt,h−1), ∀j, t, h > 1,

yjth = 1(ujt,1 > ujt−1,24), ∀j, t, h = 1,

[Positive Quantities] qjkth ≥ 0, ∀j, k, t, h,
[Integer Constraint] ujth ∈ {0, 1}, yjth ∈ {0, 1}, ∀j, t, h.
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where

t day index,
h hours of the day, h = 1, ..., 24,
j unit index, j = 1, ..., J ,
k quantity steps at the unit level, k = 1, ...,K,
qjkth quantity produced by unit j at step k, day t and hour h,
ujth run indicator, takes value of one if unit is on in day t and hour h,
yjth startup indicator, takes value of one if unit starts up in day t and hour h,
OCth cost from other firms production (piecewise linear approximation, uses auxiliary integer variables),
DRth residual demand function (piecewise linear approximation, uses auxiliary integer variables),
Cjt daily costs of production.

E Additional Tables and Figures

10



Table E.1: Marginal Cost Estimates at the Unit Level

Plant Type Size α1 α2

MW e/MWh e/MWh2

CTJON2 CCGT 380 32.83 8.89e-03
(3.72) (5.88e-03)

ESC6 CCGT 804 32.83 8.89e-03
(3.72) (5.88e-03)

GUA1 CO 148 23.79 1.19e-01
(2.66) (3.13e-02)

GUA2 CO 350 27.32 5.36e-03
(1.78) (1.15e-02)

LAD3 CO 155 23.81 8.63e-02
(1.99) (2.08e-02)

LAD4 CO 350 26.61 4.35e-03
(0.92) (9.23e-03)

PAS1 CO 214 26.08 8.97e-03
(1.43) (1.57e-02)

STC4 CCGT 396 32.83 8.89e-03
(3.72) (5.88e-03)

Notes: Sample from March to June 2007.Estimates computed using a GMM estimator with
210 moments. Bandwidth parameter set to 3e.

Table E.2: Agreggate Marginal Cost Estimates for Firm 2

(1) (2) (3) (4)

Coal (e/MWh) 23.10 22.96 10.31 23.15
(0.74) (0.74) ( NaN) (1.16)

Coal X q (e/MWh2) 3.97e-02
( NaN)

Forward Position (%) 89.84 88.39 79.36 90.04
(6.67) (6.67) ( NaN) (10.19)

Time Periods 120 120 120 120
Moments 321 321 321 321

Notes: Sample from March to June 2007. Input variable constructed with European fuel prices
of coal, natural gas and oil. Heat rates as provided in reports by the Spanish Ministry of
Industry. Estimates computed using a GMM estimator. Bandwidth parameter set to 3e.
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Table E.3: Startup Cost Estimates for Firm 2

(1) (2) (3) (4) (5) (6)
Coal (e)

150.0MW 21,290 17,007 19,363 20,565 20,557 21,979
(2,884) (723,987) (3,537) (3,125) (3,003) (3,640)

350.0MW 50,887 46,150 50,155 51,653 51,673 54,561
(4,030) (1,020,844) (4,865) (3,861) (3,563) (4,900)

Input Controls N N Y N N N
Weekday Controls Y N Y Y Y Y
Congested Excluded Y Y Y N N N
Unavailable Excluded Y Y Y Y N N
Already On Excluded Y Y Y Y Y N

Notes: Sample from March to June 2007. Dependent variable is the difference in profits of getting one
plant in or out from the market. Estimates computed using a locally linear regression around observa-
tions for which the minimum revenue requirement is just satisfied. Regression performed by fuel groups
controlling different plant sizes.
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Figure E.1: Bidders in the market appear to choose commitment ex-ante
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The distribution of first-step bids for units with no bilateral contract and no complex bid shows
that firms ensure ex-ante whether a unit will be turned on or not during that day. Dashed lines
represent minimum and maximum price observed in the whole sample. Firms submit either
very low or very high first step bids. Sample from March to June 2007.

13



Figure E.2: Example of Residual Demand for Different Smoothing Parameters

(a) Residual demand fit for different values in the relevant range of ob-
served bids and prices.
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(b) The smoothing technique should also approximate the residual de-
mand slope, which is a key statistic in the construction of the first order
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jagged slope estimates. A large smoothing parameter might flatten out the
slope. Note that the original slope is approximated as the slope between
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